sexta-feira, 10 de outubro de 2008

Trascrição genética a decorrer.Ver artigo principal: Expressão genéticaA expressão genética envolve a transcrição, na qual o ADN é usado como modelo para a produção de ARN. No caso de genes que codificam proteínas, o ARN produzido por este processo é o ARN mensageiro, que depois necessita de ser traduzido pelos ribossomas para formação das proteínas. Como os ribossomas se localizam fora do núcleo, o ARNm produzido necessita de ser exportado.[39]Uma vez que o núcleo é o local da transcrição, também contém uma variedade de proteínas que ou fazem a mediação directa da transcrição ou estão envolvidos em regular o processo. Estas proteínas incluem as helicases que desenrolam a dupla fita da molécula da ADN, para facilitar a acesso a ela, a ARN-polimerase que sintetiza a molécula de ARN, a topoisomerase que muda a quantidade de enrolamento no ADN, assim como uma grande variedade de factores de transcrição que regulam a expressão genética.[40]
Processamento do pré-ARNmVer artigo principal: modificação pós-transcricionalAs moléculas recém criadas de ARNm são conhecidas como transcritos primários. Elas têm que sofrer modificação pós-transcricional no núcleo antes de serem exportadas para o citoplasma; o ARNm que aparece no núcleo sem estas modificações é degradado em vez de traduzido em proteínas. As três principais modificações são: inserção de uma capa na extremidade 5', poliadenilação na extremidade 3', e splicing de ARN. Enquanto no núcleo, o pré-ARN está associado com uma variedade de proteínas, em complexos denominados partículas de ribonucleoproteínas heterogéneas (hnRPNs). A adição da capa 5´ocorre co-transcricionalmente e é o primeiro passo na modificação pós-transcricional]]. A cauda múltipla de adenina na extermidade 3' é apenas adicionada após a transcrição estar completa.O splicing do ARN, levado a cabo por um complexo denominado spliceossoma, é o processo pelo qual os intrões, ou regiões do ADN que não codificam proteínas, são removidas do pré-ARNm e o remanescente exão é reconectado numa molécula contínua. Este processo normalmente ocorre após a inserção da capa 5' e da poliadenilação 3', mas pode ter início antes da síntese estar completa em transcritos com muitos exões.[4] Muitos pré-ARNm, incluindo aqueles que codificam anticorpos, podem sofrer splicing de variadas formas, produzindo diferentes ARMm maduros que codificam proteínas com diferentes estruturas primárias. Este processo é conhecido com splicing alternativo e permite a produção de uma grande variedade de proteínas a partir de uma quantidade limitada de ADN.Dinâmica e regulaçãoTransporte nuclearMacromoléculas, como o ARN e proteínas, são transportadas activamente através da membrana nuclear, num processo denominado ciclo Ran-GTP de transporte nuclear.Ver artigo principal: Transporte nuclearA entrada e saída de grandes moléculas do núcleo está intimamente controlada pelos complexos de poros nucleares. Apesar de pequenas moléculas poderem entrar no núcleo sem regulação,[41] macromoléculas como o ARN e proteínas requerem associação com carioferinas denominadas importinas para entrar no núcleo e exportinas para sair. Proteínas de carga que têm que ser transferidas do citoplasma para o núcleo contêm sinais de localização nuclear ligadas pelas exportinas. A habilidade das importinas e exportinas em transportar a sua carga é regulada por GTPases, enzimas que hidrolisam a molécula de guanosina trifosfato para libertar energia. A GTPase de maior importância envolvida no transporte nuclear denomina-se Ran, que pode se ligar a GTP ou GDP, dependendo se estiver localizada no núcleo ou citoplasma. Enquanto que as importinas dependem de RanGTP para se dissociarem da sua carga, as exportinas requerem RanGTP para se poderem ligar à sua carga.[21]A importação nuclear depende da importina se ligar à sua carga, no citoplasma, e transportá-la através do poro nuclear até ao núcleo. Dentro do núcleo, a RanGTP actua para separar a carga da importina, permitindo que esta possa sair do núcleo para ser reutilizada. A exportação nuclear é similar, sendo que a exportina liga-se à carga dentro do núcleo, num processo facilitado pela RanGTP, saindo depois através do poro nuclear, separando depois da sua carga no citoplasma.Proteínas de exportação, especializadas, existem para efectuar a transferência de Arnm madura e ARNt para o citoplasma, após a modificação pós-transcripcional estar completa. Este mecanismo de controlo de qualidade é importante devido ao papel central destas moléculas no processo de tradução das proteínas; uma expressão errada de uma proteína devido à incompleta excisão de intrões ou a incorrecta incomporação de aminoácidos, poderão ter efeitos negativos para a célula; o ARN modificado de maneira incompleta que chega ao citoplasma é degradado em vez de ser utilizado na tradução em proteínas.[4] Agregação e desagregaçãoImagem de célula do pulmão de um tritão, durante a metáfase, na qual foi aplicado um corante fluorescente. O aparelho mitótico pode ser visto, corado a verde, agregado aos dois conjuntos de cromossomas que estão corados a azul. Todos os cromossomas menos um estão na placa metafásica.Durante o seu ciclo de vida, o núcleo pode se desagregar, quer em resposta ao processo de divisão celular quer como consequência da apoptose, uma forma de morte celular programada. Durante estes eventos, os componentes estruturais do núcleo, o envelope e a lâmina, são sistematicamente degradados.Durante o ciclo celular, a célula divide-se para formar duas células. Para que este processo seja possível, cada uma das células resultantes deverá possuir um conjunto completo de genes, um processo que requer a replicação dos cromossomas, assim como a segregação em conjuntos separados. Isto ocorre pelos cromossomas replicados, os cromatídeos irmãos, ligados aos microtúbulos, que por sua vez estão ligados a diferentes centrossomas. Os cromatídeos irmãos podem então ser puxados para diferentes localizações na célula. No entanto, em muitas células, o centrossoma está localizado no citoplasma, fora do núcleo, e os microtúbulos não podem ligar-se aos cromatídeos na presença de um envelope nuclear.[42] Portanto, nos passos iniciais do ciclo celular, começando na prófase até cerca da prometafase, a membrana nuclear é desmantelada.[8] Durante o mesmo período, a lâmina nuclear também é desagregada através de um processo regulado por fosforilação das laminas.[43] Para o fim do ciclo celular, a membrana nuclear é novamente agregada, e pela mesma altura a lâmina nuclear também o é, através da desfosforilação das laminas.[43]A apoptose é um processo controlado, através do qual os componentes estruturais da célula são destruídos, resultando na morte da célula. As mudanças associadas com a apoptose afectam directamente o núcleo e o seu conteúdo, por exemplo, na condensação da cromatina e desintegração do envelope e lâmina nucleares. A destruição da rede de laminas e controlada por proteases especializadas, denominadas caspases, que fazem a clivagem das laminas, comprometendo dessa forma a integridade estrutural do núcleo. A clivagem das laminas é por vezes usada como um indicador laboratorial da actividade de caspases, em ensaios de actividade precoce de apoptose.[8] Células que expressam laminas resistentes a caspases são deficientes nas mudanças nucleares relacionadas com a apoptose, sugerindo que as laminas desempenham um papel essencial no início dos eventos que levam à degradação do núcleo por apoptose.[8] A própria inibição da agregação das laminas é um indutor da apoptose.[44]O envelope nuclear age como uma barreira que previne que vírus de ADN e ARN entrem no núcleo. Alguns vírus requerem acesso a proteínas que existem dentro do núcleo de maneira a poderem-se replicar ou agregarem os seus componentes. Os vírus de ADN, como o herpes-vírus, replicam e agregam-se no núcleo celular, saindo depois por evaginação através da membrana nuclear interna. Este processo é acompanhado pela desagregação da lâmina da face nuclear da membrana interna.[8]Células anucleadas e polinucleadasOs eritrócitos humanos, tal como os de outros mamíferos, carecem de núcleo. Este facto faz parte do desenvolvimento normal da célula.Apesar de a maioria das células possuir um único núcleo, alguns tipos de células não possuem núcleo e outros possuem vários núcleos. Isto pode ser derivado de processos normais, como o da maturação dos eritrócito de mamíferos, ou ser resultado de divisões celulares mal sucedidas.As células anucleadas não possuem núcleo e portanto são incapazes de se dividirem para produção de descendência celular. O tipo de célula anucleada mais conhecida é o eritrócito de mamíferos, que também carece de outros organelos como a mitocôndria e serve principalmente para o transporte de oxigénio dos pulmões para os tecidos celulares. Os eritrócitos sofrem maturação através do processo denominado eritropoiese, que se dá na medula óssea e onde perdem o núcleo, organelos e ribossomas. O núcleo é expelido durante o processo de diferenciação de um eritroblasto em um reticulócito, o precursor imediato dos eritrócitos maduros.[45] A presença de um agente mutagénicos poderá induzir a libertação de alguns eritrócitos "micronucleados" imaturos.[46][47] Células anucleadas também podem surgir de divisões celulares mal processadas, em que uma das células-filhas não possui núcleo e a outra fica binucleada.As células polinucleadas possuem múltiplos núcleos. A maioria das espécies de protozoário da classe Acantharea[48] e alguns fungos em micorrizas[49] possuem células polinucleadas. Em humanos, as células do músculo esquelético, denominadas miócitos, tornam-se multinucleadas durante o seu desenvolvimento; o arranjo de núcleos resultante, perto da periferia das células, permite um máximo de espaço intracelular para as miofibrilhas.[4] Células multinucleadas também podem ser anormais em humanos; por exemplo, células que derivam da fusão de monócitos e macrófagos, conhecidas como células gigantes multinucleadas, por vezes acompanham reacções de inflamação[50] e também est\ão envolvidas na formação de tumores.[51]
EvoluçãoSendo a principal característica que define uma célula eucariótica, a origem evolutiva do núcleo tem sido alvo de muitas especulações. Quatro grandes teorias foram propostas para explicar a existência do núcleo, apesar de nenhuma ter até agora um apoio alargado.[52]A teoria conhecida como modelo sintrófico propõe que uma relação simbiótica entre as Archaea e as Bacteria terá criado a célula eucariótica portadora de núcleo. Formula-se que a simbiose se originou quando Archaea primitivas, similares às actuais Archaea metanogénicas, invadiram e passaram a viver dentro de bactérias similares às actuais mixobactérias, eventualmente formando um núcleo primordial. Esta teoria é análoga à teoria aceite sobre a origem da mitocôndria eucariótica e do cloroplasto, que se pensa terem se desenvolvido a partir de uma similar relação endossimbiótica entre um proto-eucariotas e bactérias aeróbias.[53] A origem do núcleo entre as Archaea é suportado por observações de que este grupo e os eucariotas possuem genes similares para determinadas proteínas, incluindo as histonas. As observação que mostram as mixobactérias como organismos móveis, que podem formar complexos multicelulares e que possuem quinases e proteínas G similares aos Eukarya, suportam uma origem bacteriana da célula eucariótica.[54]Um segundo modelo propõe que células proto-eucarióticas evoluíram a partir de bactérias, sem estágios endossimbióticos. Este modelo é baseado na existência das bactérias do filo Planctomycetes, que possuem uma estrutura nuclear com poros primitivos e outras estruturas membranares compartimentadas.[55] Um modelo similar propões que uma célula semelhante à eucariótica, o cronócito, evoluiu primeiramente, tendo depois fagocitado membros das Archaea e Bacteria, gerando assim o núcleo e a célula eucariótica. [56]O modelo mais controverso, conhecido como eucariogénese viral, propõe que o núcleo composto de membranas, assim como outras estruturas eucarióticas, originaram-se a partir da infecção de um vírus. A sugestão é suportada por similaridades entre eucariotas e vírus: fitas lineares de ADN e ligação forte a proteínas (analogia entre histonas e envelope viral). Uma versão da proposta sugere que o núcleo evoluiu ao mesmo tempo em que a fagocitose, formando um predador celular primitivo.[57] Outra variante propõe que os eucariotas são originários de Archaea primitivos, infectados com poxvirus, baseada nas semelhanças entre a polimerase de ADN de modernos poxvirus e eucariotas.[58][59] Tem sido sugerido que a questão ainda não resolvida da evolução do sexo possa estar ligada à hipótese da eucariogénese viral.[60]Finalmente, uma proposta recente sugere que variantes tradicionais da teoria da endossimbiose são insuficientemente robustas para explicar a origem do núcleo eucariótico. Este modelo, denominado "hipótese exomembranar", sugere que o núcleo se originou de uma única célula ancestral que formou uma segunda membrana celular externa; a membrana interior que envolvia a célula original tornar-se-ia na membrana nuclear, formando poros mais complexos ao longo do tempo, permitindo a passagem de componentes celulares sintetizados internamente como as subunidades ribossomais.[61]Referências H Harris. The Birth of the Cell. New Haven: Yale University Press, 1999. Brown, Robert (1866). "On the Organs and Mode of Fecundation of Orchidex and Asclepiadea". Miscellaneous Botanical Works I: 511–514. ↑ 3,0 3,1 Thomas Cremer. Von der Zellenlehre zur Chromosomentheorie. Berlin, Heidelberg, New York, Tokyo: Springer Verlag, 1985. ISBN 3-540-13987-7 versão online here4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 H Lodish. Molecular Cell Biology. 5th.ed. New York: WH Freeman, 2004. ↑ 5,0 5,1 5,2 5,3 Molecular Biology of the Cell. 4th.ed. Garland Science, 2002. Stuurman N, Heins S, Aebi U (1998). "Nuclear lamins: their structure, assembly, and interactions". J Struct Biol 122 (1–2): 42–66. PMID 9724605. Goldman A, Moir R, Montag-Lowy M, Stewart M, Goldman R (1992). "Pathway of incorporation of microinjected lamin A into the nuclear envelope". J Cell Biol 119 (4): 725–735. PMID 1429833. ↑ 8,0 8,1 8,2 8,3 8,4 Goldman R, Gruenbaum Y, Moir R, Shumaker D, Spann T (2002). "Nuclear lamins: building blocks of nuclear architecture". Genes Dev 16 (5): 533–547. PMID 11877373. Moir RD, Yoona M, Khuona S, Goldman RD. (2000). "Nuclear Lamins A and B1: Different Pathways of Assembly during Nuclear Envelope Formation in Living Cells". Journal of Cell Biology 151 (6): 1155–1168. PMID 11121432. (2002) "Alteration of nuclear lamin organization inhibits RNA polymerase II–dependent transcription". Journal of Cell Biology 156 (4): 603–608. PMID 11854306. Ehrenhofer-Murray A (2004). "Chromatin dynamics at DNA replication, transcription and repair". Eur J Biochem 271 (12): 2335–2349. PMID 15182349. Grigoryev S, Bulynko Y, Popova E (2006). "The end adjusts the means: heterochromatin remodelling during terminal cell differentiation". Chromosome Res 14 (1): 53–69. PMID 16506096. Schardin, Margit; T. Cremer, H. D. Hager, M. Lang (December 1985). "Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories". Human Genetics 71 (4): 281–287. Springer Berlin / Heidelberg. DOI:10.1007/BF00388452. PMID 2416668. Lamond, Angus I.; William C. Earnshaw (24 April 1998). "Structure and Function in the Nucleus". Science 280: 547–553. PMID 9554838. Kurz, A; S Lampel, JE Nickolenko, J Bradl, A Benner, RM Zirbel, T Cremer and P Lichter (1996). "Active and inactive genes localize preferentially in the periphery of chromosome territories". The Journal of Cell Biology 135: 1195–1205. The Rockefeller University Press. PMID 8947544. NF Rothfield, BD Stollar (1967). "The Relation of Immunoglobulin Class, Pattern of Antinuclear Antibody, and Complement-Fixing Antibodies to DNA in Sera from Patients with Systemic Lupus Erythematosus". J Clin Invest 46 (11): 1785–1794. PMID 4168731. S Barned, AD Goodman, DH Mattson (1995). "Frequency of anti-nuclear antibodies in multiple sclerosis". Neurology 45 (2): 384–385. PMID 7854544. Paine P, Moore L, Horowitz S (1975). "Nuclear envelope permeability". Nature 254 (5496): 109–114. PMID 1117994. Human Physiology. 3rd.ed. Saunders College Publishing, 1996. Shulga N, Mosammaparast N, Wozniak R, Goldfarb D (2000). "Yeast nucleoporins involved in passive nuclear envelope permeability". J Cell Biol 149 (5): 1027–1038. PMID 10831607. ↑ 21,0 21,1 Pemberton L, Paschal B (2005). "Mechanisms of receptor-mediated nuclear import and nuclear export". Traffic 6 (3): 187–198. PMID 15702987. Hernandez-Verdun, Daniele (2006). "Nucleolus: from structure to dynamics". Histochem. Cell. Biol (125): 127–137. DOI:10.1007/s00418-005-0046-4. ↑ 23,0 23,1 Lamond, Angus I.; Judith E. Sleeman. "Nuclear substructure and dynamics". Current Biology 13 (21): R825–828. PMID 14588256. ↑ 24,0 24,1 24,2 Cioce M, Lamond A. "Cajal bodies: a long history of discovery". Annu Rev Cell Dev Biol 21: 105–131. PMID 16212489. ↑ 25,0 25,1 25,2 Thomas D. Pollard. Cell Biology. Philadelphia: Saunders, 2004. ISBN 0-7216-3360-926,0 26,1 26,2 Dundr, Miroslav; Tom Misteli (2001). "Functional architecture in the cell nucleus". Biochem. J. (356): 297–310. PMID 11368755. Fox, Archa. Entrevista com R. Sundby. Paraspeckle Size. E-mail Correspondence. 2007-03-07. ↑ 28,0 28,1 28,2 Matera AG, Frey MA. (1998). "Coiled Bodies and Gems: Janus or Gemini?". American Journal of Human Genetics 63 (2): 317–321. PMID 9683623. Matera, A. Gregory (1998). "Of Coiled Bodies, Gems, and Salmon". Journal of Cellular Biochemistry (70): 181–192. PMID 9671224. Saunders WS, Cooke CA, Earnshaw WC (1991). "Compartmentalization within the nucleus: discovery of a novel subnuclear region.". Journal of Cellular Biology 115 (4): 919–931. PMID 1955462 Pombo A, Cuello P, Schul W, Yoon J, Roeder R, Cook P, Murphy S (1998). "Regional and temporal specialization in the nucleus: a transcriptionally active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle". EMBO J 17 (6): 1768–1778. PMID 9501098. ↑ 32,0 32,1 Fox, Archa et al (2002). "= PIIS0960982201006327 Paraspeckles:A Novel Nuclear Domain". Current Biology 12: 13–25. Fox, Archa (2004). Nuclear Compartments: Paraspeckles. Nuclear Protein Database. ↑ 34,0 34,1 Fox, A. et al (2005). "P54nrb Forms a Heterodimer with PSP1 That Localizes to Paraspeckles in an RNA-dependent Manner". Molecular Biology of the Cell 16: 5304–5315. PMID 16148043 Handwerger, Korie E.; Joseph G. Gall (January 2006). "Subnuclear organelles: new insights into form and function". TRENDS in Cell Biology 16 (1): 19–26. DOI:10.1016/j.tcb.2005.11.005. Albert L. Lehninger. Lehninger principles of biochemistry. 3rd.ed. New York: Worth Publishers, 2000. ISBN 1-57259-931-6 Moreno F, Ahuatzi D, Riera A, Palomino CA, Herrero P. (2005). "Glucose sensing through the Hxk2-dependent signalling pathway.". Biochem Soc Trans 33 (1): 265–268. PMID 15667322 Görlich, Dirk; Ulrike Kutay (1999). "Transport between the cell nucleus and the cytoplasm". Ann. Rev. Cell Dev. Biol. (15): 607–660. PMID 10611974. Knud H. Nierhaus. Protein Synthesis and Ribosome Structure: Translating the Genome. Wiley-VCH, 2004. ISBN 3527306382 Claudio A. Nicolini. Genome Structure and Function: From Chromosomes Characterization to Genes Technology. Springer, 1997. ISBN 0792345657 JD Watson. Molecular Biology of the Gene. 5th ed..ed. Peason Benjamin Cummings; CSHL Press., 2004. Lippincott-Schwartz, Jennifer (7 March 2002). "Cell biology: Ripping up the nuclear envelope". Nature 416 (6876): 31–32. DOI:10.1038/416031a. ↑ 43,0 43,1 Boulikas T (1995). "Phosphorylation of transcription factors and control of the cell cycle". Crit Rev Eukaryot Gene Expr 5 (1): 1–77. PMID 7549180. Steen R, Collas P (2001). "Mistargeting of B-type lamins at the end of mitosis: implications on cell survival and regulation of lamins A/C expression". J Cell Biol 153 (3): 621–626. PMID 11331311. Skutelsky, E.; Danon D. (June 1970). "Comparative study of nuclear expulsion from the late erythroblast and cytokinesis". J Cell Biol (60(3)): 625–635. PMID 5422968. Torous, DK; Dertinger SD, Hall NE, Tometsko CR. (2000). "Enumeration of micronucleated reticulocytes in rat peripheral blood: a flow cytometric study". Mutat Res (465(1–2)): 91–99. PMID 10708974. Hutter, KJ; Stohr M. (1982). "Rapid detection of mutagen induced micronucleated erythrocytes by flow cytometry". Histochemistry (75(3)): 353–362. PMID 7141888. Zettler, LA; Sogin ML, Caron DA (1997). "Phylogenetic relationships between the Acantharea and the Polycystinea: A molecular perspective on Haeckel's Radiolaria". Proc Natl Acad Sci USA (94): 11411–11416. PMID 9326623. Horton, TR (2006). "The number of nuclei in basidiospores of 63 species of ectomycorrhizal Homobasidiomycetes". Mycologia (98(2)): 233–238. PMID 16894968. McInnes, A; Rennick DM (1988). "Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells". J Exp Med (167): 598–611. PMID 3258008. Goldring, SR; Roelke MS, Petrison KK, Bhan AK (1987). "Human giant cell tumors of bone identification and characterization of cell types". J Clin Invest (79(2)): 483–491. PMID 3027126. Pennisi E. (2004). "Evolutionary biology. The birth of the nucleus". Science 305 (5685): 766–768. PMID 15297641. Symbiosis in Cell Evolution. San Francisco: W. H. Freeman and Company, 1981. 206–227 p. ISBN 0-7167-1256-3 Lopez-Garcia P, Moreira D. (2006). "Selective forces for the origin of the eukaryotic nucleus". Bioessays 28 (5): 525–533. PMID 16615090. Fuerst JA. (2005). "Intracellular compartmentation in planctomycetes". Annu Rev Microbiol. 59: 299–328. PMID 15910279. Hartman H, Fedorov A. (2002). "The origin of the eukaryotic cell: a genomic investigation". Proc Natl Acad Sci U S A. 99 (3): 1420–1425. PMID 11805300. Bell PJ. (2001). "Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus?" J Mol Biol Sep;53(3):251–256. PMID 11523012 Takemura M. (2001). Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol 52(5):419–425. PMID 11443345 Villarreal L, DeFilippis V (2000). "A hypothesis for DNA viruses as the origin of eukaryotic replication proteins". J Virol 74 (15): 7079–7084. PMID 10888648. Bell PJ. (2006). "Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus." J Theor Biol 2006 November 7;243(1):54–63. PMID 16846615 de Roos AD (2006). "The origin of the eukaryotic cell based on conservation of existing interfaces". Artif Life 12 (4): 513–523.. PMID 16953783

Nenhum comentário: